Rotacional:
Es un operador vectorial sobre campos vectoriales definidos en un abierto de que muestra la tendencia de un campo vectorial a inducir rotación alrededor de un punto.Matemáticamente, esta idea se expresa como el límite de la circulación del campo vectorial, cuando la curva sobre la que se integra se reduce a un punto:
Aquí, es el área de la superficie apoyada en la curva , que se reduce a un punto. El resultado de este límite no es el rotacional completo (que es un vector), sino solo su componente según la dirección normal a y orientada según la regla de la mano derecha. Para obtener el rotacional completo deberán calcularse tres límites, considerando tres curvas situadas en planos perpendiculares.
Aunque el que el rotacional de un campo alrededor de un punto sea distinto de cero no implica que las líneas de campo giren alrededor de ese punto y lo encierren. Por ejemplo, el campo de velocidades de un fluido que circula por una tubería (conocido como perfil de Poiseuille) posee un rotacional no nulo en todas partes, salvo en el eje central, pese a que la corriente fluye en línea recta:
La idea es que si colocamos una rueda de paletas infinitamente pequeña en el interior del campo vectorial, esta rueda girará, aunque el campo tenga siempre la misma dirección, debido a la diferente magnitud del campo a un lado y a otro de la rueda.
Expresión en coordenadas cartesianas
Partiendo de la definición mediante un límite, puede demostrarse que la expresión, en coordenadas cartesianas, del rotacional esque se puede expresar de forma más concisa con ayuda del operador nabla como un producto vectorial, calculable mediante un determinante:
Debe tenerse muy presente que dicho determinante en realidad no es tal pues los elementos de la segunda fila no tienen argumento y por tanto carecen de sentido. Además dicho determinante sólo puede desarrollarse por la primera fila. En definitiva, la notación en forma de determinante sirve para recordar fácilmente la expresión del rotacional.
En la notación de Einstein, con el símbolo de Levi-Civita se escribe como:
Expresión en otros sistemas de coordenadas
Si se emplean sistemas de coordenadas diferentes del cartesiano, la expresión debe generalizarse, para incluir el que los vectores de la base dependen de la posición. Para un sistema de coordenadas ortogonales, como las cartesianas, las cilíndricas o las esféricas, la expresión general precisa de los factores de escala:(donde, en cartesianas, y reobtenemos la expresión anterior. En coordenadas cilíndricas y en coordenadas esféricas ).
Divergencia:
Mide la diferencia entre el flujo saliente y el flujo entrante de un campo vectorial sobre la superficie que rodea a un volumen de control, por tanto, si el campo tiene "fuentes" la divergencia será positiva, y si tiene "sumideros", la divergencia será negativa. La divergencia mide la rapidez neta con la que se conduce la materia al exterior de cada punto, y en el caso de ser la divergencia idénticamente igual a cero, describe al flujo incompresible del fluido.Llamado también campo solenoidal.
La divergencia de un campo vectorial
La divergencia de un campo vectorial en un punto es un campo escalar, y se define como el flujo del campo vectorial por unidad de volumen conforme el volumen alrededor del punto tiende a cero:
donde es una superficie cerrada que se reduce a un punto en el límite. El símbolo representa el operador nabla.
Esta definición está directamente relacionada con el concepto de flujo del campo. Como en el caso del flujo, si la divergencia en un punto es positiva, se dice que el campo posee fuentes. Si la divergencia es negativa, se dice que tiene sumideros. El ejemplo más característico lo dan las cargas eléctricas, que dan la divergencia del campo eléctrico, siendo las cargas positivas manantiales y las negativas sumideros del campo eléctrico.
Se llaman fuentes escalares del campo al campo escalar que se obtiene a partir de la divergencia de
Coordenadas cartesianas
Cuando la definición de divergencia se aplica al caso de un campo expresado en coordenadas cartesianas,el resultado es sencillo:
Coordenadas ortogonales
Sin embargo, para un caso más general de coordenadas ortogonales curvilíneas, como las cilíndricas o las esféricas, la expresión se complica debido a la dependencia de los vectores de la base con la posición. La expresión para un sistema de coordenadas ortogonales es:Donde los son los factores de escala del sistema de coordenadas, relacionados con la forma del tensor métrico en dicho sistema de coordenadas. Esta fórmula general, para el caso de coordenadas cartesianas () se reduce a la expresión anterior.
Para coordenadas cilíndricas () resulta:
Para coordenadas esféricas () resulta
Coordenadas generales
En sistemas de coordenadas generales, no necesariamente ortogonales, la divergencia de un vector puede expresarse en términos de las derivadas parciales respecto a las coordenadas y el determinante del tensor métrico:Gradiente:
el gradiente o también conocido como vector gradiente, denotado de un campo escalar es un campo vectorial. El vector gradiente de evaluado en un punto genérico del dominio de , (), indica la dirección en la cual el campo varía más rápidamente y su módulo representa el ritmo de variación de en la dirección de dicho vector gradiente. El gradiente se representa con el operador diferencial nabla seguido de la función (atención a no confundir el gradiente con la divergencia, esta última se denota con un punto de producto escalar entre el operador nabla y el campo). También puede representarse mediante , o usando la notación . La generalización del concepto de gradiente a campos vectoriales es el concepto de matriz Jacobiana.
Definición
Se toma como campo escalar el que se asigna a cada punto del espacio una presión P (campo escalar de 3 variables), entonces el vector gradiente en un punto genérico del espacio indicará la dirección en la cual la presión cambiará más rápidamente. Otro ejemplo es el de considerar el mapa de líneas de nivel de una montaña como campo escalar, que asigna a cada pareja de coordenadas latitud/longitud un escalar altitud (campo escalar de 2 variables). En este caso el vector gradiente en un punto genérico indicará la dirección de máxima inclinación de la montaña. Nótese que el vector gradiente será perpendicular a las líneas de contorno (líneas "equiescalares") del mapa. El gradiente se define como el campo vectorial cuyas funciones coordenadas son las derivadas parciales del campo escalar, esto es:Esta definición se basa en que el gradiente permite calcular fácilmente las derivadas direccionales. Definiendo en primer lugar la derivada direccional según un vector:
Una forma equivalente de definir el gradiente es como el único vector que, multiplicado por el vector unitario, da la derivada direccional del campo escalar:
Con la definición anterior, el gradiente está caracterizado de forma unívoca. El gradiente se expresa alternativamente mediante el uso del operador nabla:
Interpretación del gradiente
De forma geométrica el gradiente es un vector que se encuentra normal (perpendicular) a la curva de nivel en el punto que se está estudiando, llámese (x,y), (x,y,z), (tiempo, temperatura), etcétera. Algunos ejemplos son:- Considere una habitación en la cual la temperatura se define a través de un campo escalar, de tal manera que en cualquier punto , la temperatura es . Asumiremos que la temperatura no varía con respecto al tiempo. Siendo esto así, para cada punto de la habitación, el gradiente en ese punto nos dará la dirección en la cual la temperatura aumenta más rápido. La magnitud del gradiente nos dirá cuan rápido aumenta la temperatura en esa dirección.
- Considere una montaña en la cual su altura en el punto (x,y) se define como H(x, y). El gradiente de H en ese punto estará en la dirección para la que hay un mayor grado de inclinación. La magnitud del gradiente nos mostrará cuán empinada se encuentra la pendiente.
Propiedades
El gradiente verifica que:- , con estas dos propiedades, el gradiente es un operador lineal.
- Es ortogonal a las superficies equiescalares, definidas por =cte.
- Apunta en la dirección en que la derivada direccional es máxima.
- Su norma es igual a esta derivada direccional máxima.
- Se anula en los puntos estacionarios (máximos, mínimos y puntos de silla).
- El campo formado por el gradiente en cada punto es siempre irrotacional, esto es,
[Expandir]Demostración |
Expresión en diferentes sistemas de coordenadas
A partir de su definición puede hallarse su expresión en diferentes sistemas de coordenadas. En coordenadas cartesianas, su expresión es simplementeEn un sistema de coordenadas ortogonales, el gradiente requiere los factores de escala, mediante la expresión
Para coordenadas cilíndricas (, ) resulta
y para coordenadas esféricas (, , )
En un sistema de coordenadas curvilíneo general el gradiente tiene la forma:
donde en la expresión anterior se usa el convenio de sumación de Einstein.
No hay comentarios.:
Publicar un comentario